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How do people say a crypto system is
computationally secure?

Many experts put lots of efforts on Okay, Y is
breaking system Y for a very long time. secure

:C Still cannot find an
System Y ’ After 50yrs... :> efficient algorithm for Y

Do we really need to wait 50yrs?

e SAT has already been studied for >50yrs.
e SAT is hard (NP-complete)
SAT e P#NP (people believe)

Use SAT to show Problem Y is hard.



Show Y is hard by a reduction from SAT: SAT LY

Questions Answers

An instance of SAT ‘ Answer

SAT < Y = No efficient algorithm can break system Y unless NP = P.




Consider Y as inverting one-way functions

e [unctions which are easy to compute but hard to invert.
e A fundamental cryptographic primitive. The existence of one-way functions
implies
o Pseudorandom generators
o Digital signature scheme
o Message Authentication Codes
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Can inverting one-way functions be as hard as SAT?




One-way functions

e [unctions which are easy to compute but hard to invert.
e A fundamental cryptographic primitive. It implies

o Pseudorandom generators

o Digital signature scheme

o Message Authentication Codes

Can inverting one-way functions be as hard as SAT?

e SAT <_Inverting a one-way permutation = PH collapses [Brassard96].
e SAT <_Inverting a one-way function = PH collapses,
o when the reductions are non-adaptive [AGGMO05] or the functions
are preimage verifiable[AGGM05,BB15].



One-way functions

e [unctions which are easy to compute but hard to invert.
e A fundamental cryptographic primitive. It implies

o Pseudorandom generators

o Digital signature scheme

o Message Authentication Codes

Can inverting one-way functions be as hard as SAT?

e SAT =_Inverting a one-way permutation = PH collapses [Brassard96].
e SAT <_Inverting a one-way function = PH collapses,
o when the reductions are non-adaptive[AGGMO05] or the functions
are preimage verifiable[AGGMO05, BB15].

Only classical reductions are considered!



We are interested in quantum reductions

T |

Quantum messages

ponsarcoorsir—IRGGRALT - Answers to SAT

Quantum algorithm

Computational tasks
(e.g., inverting one-way
functions)

Hard problems

(e.g., NP-hard problems) um

Do these reductions exist?
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e SAT =_Inverting a one-way permutation = coNP & AM = PH
collapses [Brassard96].
e SAT =_Inverting a one-way function = PH collapses,
o when the reductions are non-adaptive[BT06] or the functions are
preimage verifiable[].

Our results

SAT = Invertlng a one-way permutation (Inv-OWP) =
coNP € QIP(2), where
e our result has the restrictions that the reductions are non-adaptive and the
distribution of the questions to the oracle are not far from the uniform
distribution.
e Itis not known if coNP S QIP(2).
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NP-hard Problems <. Inv-OWP= coNP € AM

Theorem [Brassad96]: SAT <_Inv-OWP => coNP SAM = The
polynomial hierarchy collapses to the second level.
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The goal is to construct a “constant-round
protocol” for SAT by using the reduction.




Arthur-Merlin Protocol

Two classical messages

exchanged .

r- a random string .

c. a proof

A(x,r,c)=L(x)

We say L € AM if

e (completeness)if x€ L, there is a prover
(Merlin) can convince Arthur (the verifier) that
XEL.

e (soundness)if x¢L, no prover (Merlin) can
convince Arthur that x L.




SAT <_Inv-OWP = SAT € AM

Given the verifier’s
randomness, the prover
knows the question
Arthur wants to ask.

1. The verifier sends his random string to the prover.
o The prover knows y after having the random string.
2. The prover sends y and x (where f(x)=y) to the verifier.
o A malicious prover may send (y’, x) # (y, X).
3. The verifier verifies whether y is the question and f(x) = y. If not, reject.
4. The verifier runs the reduction R° if he doesn’t reject in step 3.
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Can we use this protocol for guantum reductions?

Given the verifier's

randomness, the prover
knows the question
Arthur wants to ask.

r

1. The verifier sends his random string to the prover.
o The prover knows y after having the random string.
2. The prover sends y and x (where f(x)=y) to the verifier.
o A malicious prover may send (y’, x) # (y, X).
3. The verifier verifies whether y is the question and f(x) = y. If not, reject.
4. The verifier runs the reduction R° if he doesn’t reject in step 3.
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No, quantum reductions are more tricky

Each question can be in superposition
- o 1Q> ;=% c 1g>[0>,lw >,
o Icql2 can be viewed as the
12 weight of question q.

Q> A>

12

The answer is also in superposition

U, |x>|A> — 1
R o IA>,5=2 c lg>If(a)>,lw >,
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Why does the classical protocol fail?

O

(An oracle for Inv-OWP) 0 |Q>123:chq|q>1|O>2IWq>3

0 Ic:ql2 can be viewed as the
weight of question q.

|Q>12 |A>12

_ The answer is also in superposition
Reduction UR Sl

— 1 (An efficient quantum | U_|x>|A>
algorithm) R © 123_Z € |q> ik (a)> qu>3

e Simulating the reduction SAT <, Inv-OWP only gives
“‘quantum interactive proof” protocol

e The prover can cheat by giving correct (q,f'(q)), but
changing the weight Cq-

Each question can be in superposition
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Goal: SAT < Inv-OWP = SATEQIP(2)

M,>

e (completeness) if xEL, the prover can convince the verifier that x L.
e (soundness) if x¢L, no prover can convince the verifier that x EL.

We say L € QIP(2) if




Goal: SAT <_Inv-OWP = SATEQIP(2) under
uniform quantum reductions

M>

e (completeness) if x €L, the prover can convince the verifier that x L.
e (soundness) if x€L, no prover can convince the verifier that x L.

We say L € QIP(2) if

Uniform quantum reductions:

e FEach query is a uniform superposition
® IQ>=Zq|q>IO>qu>

e The answer is also in uniform superposition
0 IA>=ZIq>If‘1(q)>qu>




A protocol with “trap”

Register M of@or®/

Prover Verifier
Register M of |1A> or |S>

The trap

The real query

The main idea: If the prover cheats, he has %2 probability to cheat on the trap
state. The verifier can catch him by verifying the trap state!

e The prover cannot distinguish the trap and the real query.

e |S> can be efficiently verified by the verifier.



A protocol with “trap”
~ Register M of Q> or®/-

Prover Verifier
Register M o |A> or |S>

e |A>= |0> may not be
efficient.
e U:I[S>= |0>is efficient.




Analysis of the trap protocol

Register M of IQ> or [T>

3. The verifier does the following.
In case IQ>:

o Run the reduction and accept if the

Prover Verifier

Register M of |IA> or |S> reduction accepts.

: : In case IT>:
1. Send the register M of |Q> or [T> uniformly at :

o  Run the unitary U: IS> = 0> and
random. the output in the standard
1Q>=3 (Ig>10%), (w, >Ig>), meésure e outpu |r? e standar

Y b basis. If the outcome is 10>, accepts.
|T>—Zq(lq>|0>)M(IO>Iq>)V

The prover does not know which state he gets.

No matter which operator the prover applies, it will
e Change IS>alot

o  Suppose IS™>is far from IS>. By applying U: IS> = 10...0>, IS’> is far from 10...0>.
e Or changes IA> little.

o Suppose IA> = |A>. By applying the reduction, |A’> will be rejected with high probability.

In these two cases, the verifier rejects with high probability.
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Theorem: SATSuq Inv-OWP = coNP &S QIP(2).

The result coNP&QIP(2) is not as strong as PH collapses, However, it is a
nontrivial consequence of the existence of quantum reductions.

The “trap” protocol can be easily extended to quantum reductions with
multiple non-adaptive queries.

We can deal with other non-uniform distributions which are not far from
the uniform distribution by quantum resampling.
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Open questions

e Can we deal with other distributions or adaptive queries?
e \We shall revisit other no-go theorems for crypto primitives.

o For cryptographic primitives which security are not based on
NP-complete problems under classical reductions, can NP-complete
problems reduce to them if quantum reductions are allowed?

o E.g., Private information retrieval (PIR), FHE, Inv-OWF, ...

e Can we give more evidences that coNP is not in QIP(2)?
e Can we find other consequence which is stronger than coNP & QIP(2)?

o E.g., coNPSQAM or QMA.

e Can we find a example where we can prove quantum reductions are more
powerful than classical reductions?

e Generally, people think quantum algorithms make crypto systems less
computationally secure. But, maybe it can make crypto systems securer by
reducing hard problems to these systems.




